
c 1 
b 

/u-60 
MPF: A Portable Message Passing Facility 6 +/70 for Shared Memory Multiprocessors + 

p-J- 
Allen D .  Malony t 

@ 7  I 
Center for Supercomputing Research and Development I [3 

University of Illinois 4 
Urbana, Illinois 61801 

tt Daniel A .  R e e d  
Patrick J. McGuire 

Department of Computer Science 
University of Illinois 

Urbana, Illinois 61801 

ABSTRACT 

d 

This paper presents the design, implementation and performance evalua- 
tion of a message passing facility (MPF) for shared memory multiproces- 
sors. MPF is based on a message passing model conceptually similar to  
conversations. Participants (parallel processes) can enter or leave a 
conversation at any time. The message passing primitives for this model 
are implemented as a portable library of C function calls. MPF is 
currently operational on a Sequent Balance 21000, and several parallel 
applications have been developed and tested. We present several simpie 
benchmark programs to establish interprocess communication perfor- 
mance for common patterns of interprocess communication. Finally, we 
present performance figures for two parallel applications, linear systems 
solution and iterative solution of partial differential equations. 
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1. Introduction 

Historically, programming models for parallel processing have largely been 

architecture dependent. The absence of shared memory, for example, typically promotes 

message passing as a computing paradigm. In contrast, software for shared memory 

multiprocessors encourages the use of shared variables for inter-process communication 

and synchronization. Although the reflection of the underlying architecture in the 

programming support software encourages efficient use of the hardware, i t  constrains the 

programmer to a single world view. Because certain algorithms are naturally expressed 

in either shared memory or message passing forms, the programmer is forced t o  adapt 

the algorithm formulation to  the available programming model. Unfortunately, this 

adaptation may incur a substantial performance penalty. 

Snyder [Snyd86] has argued eloquently that  we must develop a suitable set of type 

architectures that  elide unnecessary architectural details while retaining those necessary 

to reflect the performance constraints imposed by the hardware. These type architecture 

abstractions would, for example, permit an algorithm designer to accurately estimate the 

performance penalties when moving from one type architecture to another. 

Unfortunately, no such abstractions and performance models yet exist. 

To investigate the performance tradeoffs between the shared memory and message 

passing paradigms, we have used the existing primitives on a shared memory machine t o  

develop a message passing facility. With the versatility of shared memory machines, the 

message passing primitives are easily implemented. In contrast, realizing the 

functionality of shared memory on message passing architectures is considerably more 
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difficult .' 
This paper presents the design, implementation and performance of a general 

message passing facility (MPF) for shared memory multiprocessors. As stated earlier, the 

motivation for this work is not merely to  produce a message passing implementation, but 

also to explore the problems and performance penalties of cross-architecture algorithm 

ports. esh 1 "The MPF Message Passing Model" 

T o  assess the advantages, disadvantages, and performance penalties of message 

passing on a shared memory architecture, it is crucial that  the implementation be based 

on a fully general message passing model. Hence, the MPF message passing model is 

generic, independent of that supported by any vendors of message passing machines (e.g., 

Intel [Ratt85]). We develop the notion of logical, named virtual circuits as a basis for the 

MPF message passing semantics. 

A virtual circuit is, according to standard definition, a logical connection between 

two communicating entities; the physical realization is unspecified. In the MPF model, 

the communicating entities are sets of processes whose membership can change during the 

lifetime of a virtual circuit. Because processes can join or leave virtual circuits, messages 

are directed to a virtual circuit, not individual participants. By defining names for 

virtual circuits, participants can join or leave the associated conversations [CoPe86]; 

clearly, these mutually selected names must be unique. The resulting abstraction is a 

logical, named virtual circuit (LNVC). 

It is important to understand that LNVC's provide a fully general communication 

paradigm. Conversations, by analogy with everyday life, include dialogue, group 

This asymmetry is the crux of the type architecture notion. 
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discussions, and lectures. Equivalently, LNVC’s support both bi-directional and 

unidirectional communication with two or more participants. T o  permit specification of 

a particular conversation type, we must define communications protocols for LNVC’s. 

Each process that is a member of an LNVC conversation is either a message sender 

or receiver, or both;2 see Figure 1. Message receivers identify themselves as FCFS (first- 

come, first-serve) or BROADCAST when they join the conversation. If there is a single 

message receiver in a conversation, FCFS and BROADCAST are equivalent. However, 

when multiple message receivers exist, only one FCFS receiver will receive each message. 

In contrast, all BROADCAST receivers receive all messages. Both FCFS and 

BROADCAST receivers can exist simultaneously during a con~ersa t ion .~  In this case, 

however, a message will be sent to all BROADCAST receiving processes and to only one 

of the FCFS processes. 

Justification for this LNVC model comes from two sources: conversation-based 

electronic mail [Cope861 and distributed variables [Debe86]. Like LNVC’s, conversation- 

based mail permits participants to  enter or leave the discussion at their discretion. 

In contrast, distributed variables arose as a programming paradigm for message 

passing systems. Intuitively, a distributed variable exists in a name space that is global 

to the processes but  accessible only by a message passing protocol with associated read 

and write operations. In addition, a set of process interaction rules describes the 

semantically valid operations for each type of distributed variable. Like LNVC’s, a 

distributed variable permits multiple readers and writers. 

* An LNVC exists only if the set of senders or receivers is not null. 

a The only restriction is that a receiving process of an LNVC cannot use both FCFS and BROADCAST 
protocols. 
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2. MPF Programming Environment 

The user interface to the MPF message passing environment is a library of high- 

level interface routines for LNVC management, protocol establishment and message 

transfer. Because our current implementation is based on the C programming language, 

the MPF programming primitives are defined below as C function calls. 

init (maxLNVC’s, maxjrocesses) 

openJend (processid, Invcsame) 

openreceive (processid, lnvcgame, protocol) 

closeJend (processid, lnvcjd) 

closereceive (processid, lnvcid) 

message~end (processid, lnvcid, sendbuffer, bufferlength) 

messagereceive (processid, lnvcid,  receivehuffer , bufferlength) 

checkreceive (processid, lnvcid) 

Init() is the initialization routine for MPF. Most architecture specific initialization 

and allocation are done here. In particular, shared memory is allocated for LNVC’s and 

synchronization variables are initialized for exclusive access to  internal data structures. 

The parameters mozJNVC’s and maz-processes, the maximum number of LNVC’s and 

processes, respectively, are used to estimate the amount of shared memory necessary. 

Opendendo establishes a send connection for the process process-ad on the LNVC 

lnvcjlame. If lnvcname did not previously exist, it is created. The integer returned by 

open_send() is MPF’s internal LNVC identifier for Invcjlame. This identifier must be 

used in the messagegendo and closesend() routines. 
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Openreceive0 establishes a receive connection for the process process-id on the 

LNVC lnucname with the communication protocol protocol (FCFS or BROADCAST). 

Again, if lnvclrame did not previously exist, i t  is created. An integer return value 

specifies MPF’s internal LNVC identifier for lnuclrame for use in closereceive(), 

messagereceive0 and checkreceive(). 

Close_send() and closexeceive() remove send and receive connections, 

respectively, for process process-id on LNVC lnvc-id. If this is the last process connected 

to lnvc-id, the LNVC is deleted and all unread messages are discarded. 

Message_send() transfers a message from process process-id t o  the LNVC lnuc-id. 

The contents are taken from (char *) send-bufer and the message length is buferJength 

bytes. Message sending is asynchronous, allowing a process to  proceed before the message 

reaches its destination(s). Messagereceive0 transfers a message from LNVC lnvc-id to  

the process process-id into the receive buffer starting a t  (char *) receive-bufler. 

BuferJength is set to  the number of bytes transferred. Messagereceive() is blocking; 

i t  returns only after a message has been received. 

Checkreceive0 allows process process-id t o  check for the existence of any 

messages in LNVC lnuc-id. A non-zero return value indicates the existence of a message. 

If the receive connection is BROADCAST, the message is guaranteed to be present when 

a messagereceive0 is executed. However, a process with a FCFS receive connection 

must. use checkreceive0 with caution. Although checkreceive() may indicate that a 

message is present, another process with a FCFS receive connection for lnvc-id may 

acquire the message before the checking process can receive the message. 

These MPF programming primitives provide the user a high-level interface to  the 

MPF message passing model. The following section describes the implementation of the 
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MPF programming environment for a shared memory multiprocessor system. 

3. MPF I m p l e m e n t a t i o n  

Intuitively, one would expect a significant performance and programming overhead 

t o  realize LNVC conversations. Our implementation experience on a Sequent Balance 

21000 suggests that  this is not the case. The MPF run-time support is only a few 

hundred lines of C code, and the only system dependent code involves shared memory 

allocation and synchronization. MPF could be easily ported t o  any system providing 

these facilities. The remainder of this section describes the underlying MPF 

implementation and the motivation for the choice of MPF primitives. 

3.1. Data Structures 

Dynamically linked data structures are used extensively in the MPF implementation 

for programming flexibility. The fundamental data structure is the MPF message. 

During MPF initialization, a free list of linked message blocks is created in shared 

memory'. Space allocated from this free list is used for messages during program 

execution. Messages are composed of linked message blocks together with a header for 

saving pertinent message information (e.g., message length, a pointer to the tail, and a 

pointer to the next message in a list of messages for an LNVC). During execution of a 

message~3end(), the sending buffer is copied into the message block data fields. The 

message is then copied into the receiving buffer as part of the messagereceive() 

operation. 

' In all of our experiments, 10 byte message blocks were used. 
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The key MPF design problem was identifying an effective data structure for an 

LNVC. Virtual circuits provide time-ordered message delivery [Tane81]. LNVC’s 

behave similarly. Because shared memory multiprocessors provide a global clock and 

access to message buffers is serialized by synchronization primitives, most complications 

arising in a distributed memory context are avoided. A time-ordered message stream 

will be seen by all BROADCAST receiving processes. In contrast, a FCFS receiving 

process will see only a part  of the message stream. However, the sequence preserving 

LNVC forces a time-ordering of this sub-stream as well. 

Clearly, a FIFO queue suffices to maintain sequentiality of messages between 

sending and receiving processes. However, each BROADCAST receive process must have 

its own head pointer, and the FCFS receive processes must share a head pointer. Figure 

2 illustrates one possible state of an LNVC with FCFS and BROADCAST receive 

processes. Hence, an LNVC descriptor contains the LNVC name, its internal identifier, 

the number of queued messages, a FIFO queue implemented as a linked list of messages, a 

FIFO tail pointer for sending processes, a FIFO head pointer for FCFS receiving 

processes, a description of all connections to the LNVC, and a synchronization lock for 

mutual exclusive access to  the LNVC descriptor. The LNVC connections are represented 

by send descriptors and receive descriptors, which contain the process identifier of the 

connected process. BROADCAST receive processes have an additional descriptor field 

used for individual FIFO head pointers. Like message blocks, LNVC, send, and receive 

descriptors are linked into free lists when not in use. 

3.2. P r o g r a m m i n g  Primitives 

The constraints necessary to insure consistent and efficient access to  the MPF data 

structures by concurrently executing processes, dictate the implementation of the MPF 

_ _ _ _ ~ ~  ______ 
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programming primitives. Rather than describing the details of da ta  structure 

manipulation and process mutual exclusion, we focus on two of the interesting design 

issues that arose during the implementation. 

Implementing the LNVC close operations raises the fundamental question of LNVC 

lifetime. We generally regard an  LNVC as existing only when there is a connected 

sending or receiving process; the current implementation is based on this principle. The 

semantics of the close operations state tha t  the entire LNVC FIFO structure is discarded, 

including messages, if the closed sender or receiver process is the last one connected t o  the 

LNVC. However, this implementation decision has ramifications on process interaction. 

Some care must be taken to  ensure that messages will not be lost due to  unconnected 

processes. For instance, a sending process might want to open a send connection on an 

LNVC, send some messages, and then close the connection. However, if none of the 

processes intending to receive these messages have established a receiver connection 

before the closing of the sender connection, the messages could be lost when the LNVC is 

removed. 

The eloeejeceive() operation poses a particularly vexing problem. If the FIFO 

head pointer for a receiving process is pointing t o  the head of the FIFO message list and 

the receiver connection is closed, all messages unread by the receiver but  read by all other 

connected receiver processes must be deleted. Unfortunately, i t  is difficult to  determine 

which messages should be deleted without comparing the FIFO head pointers of all 

receiving processes with the starting address of each message considered. 
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4. MPF Experiments 

To investigate the ease of use and the performance of MPF, we developed several 

test programs for the Sequent Balance 21000 [Sequ86]. All experiments were conducted 

on a machine containing 20 processors and 16 Mbytes of memory. Each Balance 21000 

processor is a 10 MHz National Semiconductor NS32032 microprocessor, and all 

processors are connected to shared memory by a shared bus with a 80 Mbyte/s 

(maximum) transfer rate. Each processor has a 8K byte, write-through cache and an 8K 

byte local memory; the latter contains a copy of selected read-only operating system data 

structures and code. 

With MPF on the Balance 21000, parallel programs consist of a group of Unix 

processes that interact using LNVC’s. The shared memory used by MPF is implemented 

by mapping a region of physical memory into the virtual address space of each process. 

Our initial experiments concentrated on verifying the LNVC implementation and 

establishing performance benchmarks for simple message transfer configurations. To test 

MPF’s performance in a parallel program, we developed a message based version of the 

Gauss-Jordan algorithm (with partial pivoting) for solving linear systems. As an 

additional test, we implemented a successive over-relaxation (SOR) algorithm for solving 

Poisson’s equation, an elliptic partial differential equation. Each of these tests is 

discussed in detail below. 

Perhaps the simplest performance test is the throughput of an LNVC consisting of 

one sender and one receiver. TO determine the LNVC throughput, measured in bytes per 

second, we designed a simple program, base, that  establishes a loop-back connection 

through an LNVC for a single process, and then alternates between sending and receiving 

fixed-length messages. Figure 3 shows the performance as a function of message length. 
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Although throughput increases with increasing message length, i t  approaches an 

asymptote. Detailed measurements show that, for large messages, LNVC updates are of 

negligible cost. Instead, message copying costs dominate; memory bandwidth is the 

performance limiting factor. 

Although the base benchmark defines the byte transfer rate limit between a sender 

and one receiver of an  LNVC, typical applications involve many processes. The message 

transfer rate for parallel programs depends on the relative amounts of FCFS and 

BROADCAST communication. However, i t  is possible to compare the performance of a 

set of parallel processes that use FCFS LNVC’s to a similar set using BROADCAST 

LNVC’S.~ Hence, we developed two synthetic parallel programs, fcfs and broadcast. The 

program fcfs uses one process to send messages of length K to an LNVC with N F C F S  

receiving processes. The program broadcast is similar except the receiving processes are 

of type BROADCAST. Figures 4 and 5 show the message transfer rates for fcfs and 

broadcast, respectively. 

The benefit of larger messages is evident in both Figures 4 and 5 .  However, the 

throughput for fcfs is very different from broadcast. With the fcfs benchmark, only one 

FCFS process can receive each message. Hence, the total message throughput is limited 

by the message transmission rate. The decreasing throughputs for 16-byte and 128-byte 

messages are caused by increased LNVC contention with additional receiver processes. 

For larger messages, this contention is masked by message copying costs. 

The throughputs for the broadcast benchmark illustrate the MPF support for 

concurrent messagejeceive() operations by BROADCAST receivers. Although the 

In a FCFS LNVC, all receiving processes are FCFS, and there are no BROADCAST receive connec- 
tion. A BROADCAST LNVC is the converse. 
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actual message transmission rate is unchanged from the fcfs benchmark, all message 

receivers obtain a copy of each message. Thus, by allowing the receiver processes to  copy 

messages concurrently, higher throughputs can be achieved. The maximum attainable 

broadcast throughput is limited by the concurrent efficiency of MPF, as well as the 

memory bandwidth. MPF achieved an effective throughput of 687,245 bytes per second 

for 1024-byte messages and 16 receiving processes. As with the fcfs benchmark, message 

throughput is sub-linear with the number of processes when the message length is small; 

contention is again the reason. 

As a final throughput benchmark, we constructed a synthetic program whose 

processes can each send to and receive from all other processes. The communications 

pattern is fully-connected with a FCFS LNVC defined for each destination process. In 

this benchmark, each process sends a specified number of fixed-length messages; 

destinations are selected randomly. Each time a process executes a messagesend(), i t  

then receives all messages that are queued in its LNVC. 

Figure 6 shows the results obtained with this benchmark program. As expected, 

throughput increases as message length increases. More importantly, message throughput 

increases as additional processes are added to  the benchmark. This implies that  MPF can 

support concurrent operation on multiple LNVC’s. We expect increasing overhead with 

more processes, however, and this is evident in the decreasing slope of the throughput 

curves. 

When a large number of processes are transmitting large messages, MPF must 

allocate a large amount of memory for message buffers. The larger the memory 

requirements for message transfer, the more susceptible MPF performance is to virtual 

memory overheads. For 1024-byte messages, paging overhead increases rapidly for more 
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than 10 processes; this is the reason for the decrease in observed throughput. Paging 

overheads are also significant for 256-byte messages but do not occur until their are 20 

active processes. Similar behavior would likely occur for smaller message sizes if the 

Balance 21000 had additional processors. 

As an application test program, the Gauss-Jordan algorithm (with partial pivoting) 

for solving linear systems is ideal; it contains both one-to-one and broadcast 

communications. The Gauss-Jordan algorithm converts the linear system Az = 6 ,  where 

A is non-singular, to  the equivalent linear system A'z = 6' where A '  is diagonal. The 

parallel implementation of this algorithm partitions the matrix A into equal sized groups 

of contiguous rows; each partition is assigned to  a process. Each process searches for the 

maximum element in the current column, and sends this value to an arbiter process. The 

arbiter process identifies the maximum of the maxima, and advises the process holding 

this value. The identified process broadcasts the selected pivot row to all other processes. 

The processes then sweep the rows of their partition using this pivot row and begin a new 

iteration. 

Figure 7 shows the speedup for the Gauss-Jordan algorithm as a function of matrix 

size and the number of processors. Speedup is greater with larger matrices; this is the 

classic computation versus communication balance faced by message-passing systems. As 

noted above, there are two types of communication: selecting a pivot row and 

broadcasting that  pivot row. Increased parallelism increases the number of FCFS 

messages sent to  the arbiter process during pivot selection. Similarly, increased 

parallelism means additional processes must capture the pivot row as i t  is broadcast. 

Conversely, increased parallelism decreases the number of matrix rows assigned to each 

task. Hence, the computation per process decreases while the communication cost 
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increases. In the extreme, excessive parallelization yields insufficient computation per 

iteration, and speedup declines. Larger matrices permit effective use of more processors. 

The most important conclusion to be drawn from Figure 7 is that  real speedups can be 

obtained in the MPF environment. 

As a final test of the flexibility of the MPF programming environment, we adapted a 

parallel, elliptic partial differential equations solver, written for a hypercube [Ratt85]. 

The solver iterates over a grid of points, using successive over-relaxation (SOR), until the 

grid converges to a solution of the partial differential equation. If the grid of points 

P P  contains PXP points, i t  is partitioned into N X N  subgrids of size -X- .  Each subgrid 
N N  

is assigned to a processor, and each processor iterates over its subgrid. On each iteration, 

the boundaries of each sub-grid must be exchanged with the four neighboring processors. 

In addition, the processors determine if the local sub-grid has converged and send this 

status information to a monitoring process. Because the computation cost for an 

iteration is proportional to the area of the sub-grids, and the communication cost is 

proportional to  their perimeter, the computation/communication ratio can be adjusted 

by varying the number of processors. 

Porting the hypercube program to MPF was very simple. The interprocess 

communication among neighbors corresponds naturally to FCFS LNVC’s. Similarly, 

BROADCAST LNVC’s were used to  broadcast convergence information from the 

monitoring process. Figure 8 shows speedup as a function of grid size and number of 

6 processes. 

’ Because no equivalent, sequential solver was available, all speedups are shown relative to the smallest 
parallel solver: 4 processes. 
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Certainly, more experimentation is necessary to explore the usefulness of MPF for 

real message passing applications development. However, the experimental programs and 

results presented above are encouraging as an indication of the programming flexibility of 

the MPF environment and MPF’s ability to  support concurrent operation. 

5. Conclusion 

A message passing environment for shared memory multiprocessors is interesting for 

several reasons. As a parallel programming paradigm conceptually different from the 

shared memory approach, message passing offers the user a different programming 

alternative. A particularly interesting benefit of a message passing facility for shared 

memory machines is the ability to develop a program using a hybrid parallel 

programming paradigm. 

MPF supports the paradigm with a general message passing model and an 

implementation that  hides the details of the underlying message communications. 

Programs destined for message passing systems can be easily prototyped in the MPF 

environment. The versatility of a shared memory machine provides a flexible 

implementation base for a message passing facility. The Sequent Balance 21000 MPF 

implementation takes only 800 lines of heavy-commented C code and adds 7000 bytes to 

a user’s program. Furthermore, the implementation is completely portable between 

shared memory multiprocessors that provide locking and memory sharing between 

concurrently executing processes. 

The MPF implementation discussed in this paper has clear inefficiencies resulting 

from the full support of the general message passing model. One method t o  improve the 

performance of the MPF system is to restrict the generality of message communication 
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and process interaction. Clearly, simpler and more efficient implementations can result. 

For instance, to  support synchronous message passing, copying of da ta  from a sending 

buffer t o  a linked message buffer and then to the receiving buffer is unnecessary; direct 

data  transfer is possible. Furthermore, if only one-to-one communication is 

implemented, all locking associated with message handling is removed. Studies of 

simplified message passing systems for shared memory multiprocessors are currently 

underway. One important research issue with these systems is the effect of the parallel 

programming paradigm (message passing or shared memory) on application performance. 
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Figure 3 
Base Benchmark 
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Figure 4 
Fcfs Benchmark 
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Figure 5 
Broadcast Benchmark 
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Random Benchmark 
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Figure 7 
Gauss Jordan 
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Figure 8 
Poisson Elliptic PDE Solver with SOR Iterations 
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